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Abstract. The  set of self-avoiding random surfaces Y,, ( h  1 with n plaquettes and  h boundary 
components  is considered. The concatenation of surfaces in Y , , ( / i )  a n d  new constructions 
which either increase o r  decrease the number of boundary components of a surface are  
studied. These constructions make i t  possible to prove the existence of growth constants, 
PI, ,  for the cardinality s , , ( h )  of Y , , ( h )  for  each h 2 1 in two dimensions and  h 2 0 in d 2 3 
dimensions.  We prove that P I ,  = P ,  for all h 3 1 i n  d 2 2 dimensions.  In addition, we probe 
that p(,< p ,  in d 2 3  dimensions and  that in two dimensions p ,  < p, where p is the growth 
constant of the set Y,,, the set of all self-avoiding surfaces in  two dimensions.  Finally, by 
postulating the existence of a critical exponent d,, for each set Y,,Ih),  by assuming that 
J ~ , (  h )  - n-mi!p;:, we derive bounds on dl, from the constructions defined on the surface in 
Y , , ( h ) .  

1. Introduction 

Random surfaces have attracted a great deal of attention in recent years and have been 
proposed as models of a wide variety of different physical phenomena. These range 
from quantum field theory to solid state physics. In quantum field theory surfaces 
appear in the random surface representation of lattice gauge theories [ l ,  21, where it 
is hoped to provide an  understanding of the confinement properties of QCD. The 
discrete version of the Polyakov string and the worldsheet action of the three- 
dimensional Ising model are also modelled by random surfaces [3]. A good review 
can be found in [4]. 

In  condensed matter physics many problems involving interfaces and  domaiii walls 
can be couched in terms of random surfaces [5-71, and self-avoiding surfaces have 
been used as models of membrane-like polymer networks [5, 81. 

Glaus has recently studied two different kinds of self-avoiding surfaces in the simple 
cubic lattice in three dimensions [ 9 ] .  These are surfaces homeomorphic to a sphere 
and  a disc respectively. He presented numerical evidence that these surfaces are in 
the same universality class as branched polymers (or lattice animals) by estimating the 
value of an  appropriate critical exponent (see also [ 101). 

Recently the importance of cycles in the statistics of lattice animals has been studied 
by numerical [ l l ,  121 and  analytical approaches [13, 141. I t  has been shown that the 
critical exponent governing the number of animals with fixed cyclomatic index ( c )  is 
a function of c. (The cyclomatic index is the maximum number of edges which can 
be removed without disconnecting the animal.) I n  this paper we investigate a class of 
self-avoiding surfaces and  show that there are strong similarities between the behaviour 
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of surfaces and the behaviour of animals. I n  particular we consider surfaces with a 
fixed number of boundary components and present evidence that the boundary com- 
ponents in surfaces play a similar role to cycles in animals. Note that the number ( h )  
of boundary components is related to the genus (g) of the surface and the rank ( p )  
of its first homology group by the expression [15] 

( 1 . 1 )  
for h 3 1. 

Related to this work are the results of Durhuus et a1 [16, 171 who studied self- 
avoiding surfaces homeomorphic to a disc with fixed boundary y. They proved that 
the surfaces grow exponentially fast with area and that the growth constant is indepen- 
dent of the boundary y. 

We shall be concerned with surfaces in the d-dimensional hypercubic lattice 3*, 
where d 3 2 .  A self-avoiding surface is made up of elementary unit squares, or 
plaquettes. A plaquette is the interior and boundary of a unit square whose vertices 
are in the lattice %*. We say that two plaquettes are joined if they share a common 
edge and that two plaquettes are connected if they are elements in a sequence of 
plaquettes such that neighbouring pairs of elements are joined. A surface is a collection 
of plaquettes such that each pair of plaquettes in the surface is connected. A surface 
is self-avoiding if each edge of a plaquette in the surface is incident on either one or 
two plaquettes. Edges incident on only one plaquette form part of the boundary of 
the surface, which may consist of several disjoint components. For instance, in three 
dimensions a surface homeomorphic to a disc has a single boundary component as 
does a surface homeomorphic to a Mobius strip. The boundary components can be 
linked and  a single boundary component can be knotted, as in the Seifert surface of 
a trefoil. 

Define Y , , ( h )  to be the set of all self-avoiding surfaces in %* with h disjoint 
boundary components and  consisting of n plaquettes. Two surfaces are regarded as 
distinct if they cannot be superimposed by translation. We include all surfaces, 
irrespective of genus, and irrespective of orientability. We note that if h = 0 then the 
surfaces are closed. Let s , ( h )  be the cardinality of Y n ( h ) .  Define Y,  to be the union 
of all the sets Yn(h )  and let s, be the cardinality of 9,. 

Any self-avoiding surface c ~ , ( h ) ~ Y , ( h )  has a vertex set Y", an  edge set 8 and a 
plaquette set P. Let {e ,>:'=,  be the set of d orthogonal unit vectors in %*. Then any 
vertex v E "1' can be represented by a d-tuple ( U , ,  u2 ,  . . . , v d )  E "L"c 2'*. An edge in 8 
can be represented by a pair ( U ,  e , )  where U and U + e,  are in "1' and are the endpoints 
of the edge. Similarly, a plaquette in 9' can be represented by a triple (U, e , ,  e,)  where 
e, . e, = 0 and U, v + e,, v + e, and t: + e, + e, are elements of "L". 

This paper is organised in the following way. In B 2 we prove that s, is exponentially 
bounded from above (that is, there exists a positive number K < 00 such that n-' log s, s 
log K for all n ) .  Consequently, s , , ( h )  is also exponentially bounded from above. The 
concatenation of surfaces in the sets 9 , ( h )  and SF, is considered in d 2 2 dimensions 
in 5 3. An immediate result of this concatenation is that the following limits exist: 

p = h + 2g - 1 

I I -X  lim n - '  log s,,(O) =log  p(, i f d 3 3  (1.2) 

n - x  lim n- '  log s,, = log p if d 2. (1.3) 

Constructions on the surfaces in Y', ,(h) which will increase or decrease the number 
of boundary components ('drilling' and  'stripping') are considered in 5 4. These 
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additional constructions, in conjunction with concatenation, allow us to prove that the 
limit 

Iim n- '  log s,( h )  = log pI, if d 2 2  (1.4) 
n - r  

exists for all values of h 3 1 and that 

PI = Ph V h  2 1. (1.5) 

An upper bound on s,(O) and  a lower bound on s , ( l )  derived in section 5 in d 3 3 
dimensions proves that 

P o < @ ,  d 3 3  (1.6) 

In two dimensions a result from 8 4 provides a proof that 

P I < P  d = 2 .  (1.7) 

At present we are unable to extend this result to d 2 3  dimensions. In Fi 6 we assume 
that in d 3 2 dimensions there exist constants C, for all h 3 1 such that 

s , ( h ) -  Chn-dJ 'p; :  (1.8) 

where 4/, is an exponent to be determined. The following bounds on #J~, can then be 
proven: 

and  

4/,2 h+, 3 41 - 2 h  V h 2 l  and d 3 3 .  (1.10) 

2. Exponential bounds on s, and s,(h)  

In this section we prove that s,, is exponentially bounded as n + X. This result is an  
essential ingredient in the proofs that limits like (1.2), (1.3) and (1.4) exist. We 
generalise a method of Eden E181 and Klarner [19] (applied to n-ominoes [20]) to 
construct an  upper bound on s,,. This procedure has the advantage that it leads to a 
sequence of improved bounds if the surfaces are viewed as a sequence of twigs (see 
[21] for details). 

Theorem 2.1. There exists a real constant 0 < K < x, such that in d 3 2 dimensions 

and  consequently 

where 

log K = (4(2d - 3 ) +  1) log(4(2d - 3 1 1  1)  - (4(2d - 3 ) -  1) log(4(2d - 3 ) -  1). 
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Proof: Let U, E 9'" be a self-avoiding surface with n plaquettes in d dimensions with 
a plaquette set 9'. Each plaquette can be represented by a triple ( U ,  e , ,  e , )  and has 
centre coordinates c = v + i e ,  + ; e r .  Since g,, is connected, each plaquette has at least 
one and at most four nearest neighbours, each of which may be in at most (2d  -3 )  
different orientations with respect to the plaquette. Choose the plaquette with minimum 
centre coordinates by defining the successive sets C, by 

Since U" is self-avoiding, there exists a least Is d such that C, has only one element. 
Denote this plaquette by 1. Suppose this plaquette is oriented in the ( e , ,  e,) plane, 
i < j .  Denote the nearest neighbours of 1 by 2 ,3 ,  . . . by first labelling the plaquette 
incident on the edge in the e, direction of 1 (if  there is a plaquette incident on this 
edge). Proceed then to the e, direction, the -e ,  and -e, directions, labelling plaquettes 
successively, if they are present. Then proceed to the plaquette labelled 2 and label 
its unlabelled nearest neighbours in the same manner as above. Repeating this process 
will label all the plaquettes with numbers 1 to n in a unique way. 

The edge (say ( U ,  e , ) )  of a plaquette labelled p (say ( U ,  e , ,  e , ) )  can now be represented 
by a sequence of (2d  -3)  binary digits E,, where 1 c Is (2d - 3). If this edge is not 
incident on a neighbouring plaquette, or if i t  is incident on a plaquette with label q < p ,  
then we put all the B, equal to zero. I f  this edge is incident on a plaquette ( U ,  e , ,  ( * ) e k )  
with label r > p ,  then one of the digits B, is put equal to one. The neighbouring 
plaquette may have any of (2d  -3) orientations with respect to p ,  since if it is in the 
( e , ,  - e n )  plane, then 1 s k S d and k # i, j ,  and if it is in the ( e , ,  e h )  plane, then 1 s k s d 
and k # i. Let the digits B, correspond to these orientations with increasing k, alternating 
between positive and negative directions. I f  the plaquette r is in a particular orientation, 
then that digit corresponding to this orientation is put equal to one. The plaquette p 
has four edges, so we can represent it by a sequence of 4(2d -3) binary digits, a 
sequence of ( 2 d  -3 )  for each of the edges. For the plaquette ( U ,  e , ,  e , )  with i < j ,  we 
can uniquely order the edges in the sequence ( U ,  e, 1, ( U ,  e r ) ,  ( U  + e, ,  e, ) and ( U  + e , ,  e , ) ,  
and the whole surface can then be represented by 4(2d -3) (  n - 1)  binary digits (since 
the last labelled plaquette, n, has no nearest neighbours with labels bigger than n ) ,  of 
which precisely ( n  - 1 )  digits are 1 (this is because we only put a digit in a sequence 
representing a plaquette labelled p equal to one if it corresponds to a neighbouring 
plaquette with label bigger than p ) .  The number of ways that ( n  - 1) 1s can be chosen 
from 4(2d - 3)( n - 1 )  digits is 

1. 4(2d -3 ) (n  - 1) ( ( n  - 1) 

This number is exponentially bounded from above in n. Hence, since the plaquette 
with label 1 can be in (i) orientations, 

where K is given by [22] 

K = (4(2d  -3) + 1 )  l0g(4(2d -3 )  + 1) - (4(2d -3 ) -  1) log(4(2d-3)-1). 
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3. Concatenation of self-avoiding surfaces 

The concatenation of two self-avoiding surfaces a , ( h )  E Y,( h )  and a , ( g )  E Y,,,(g) in 
d 3 2 dimensions is not an obvious operation. In particular, it is possible that the 
‘rightmost piece’ of a , ( h )  is an edge, while the ‘leftmost piece’ of a , ( g )  is a plaquette, 
and it  is not immediately obvious how to concatenate these surfaces. Consider the 
vertex set ‘Y of a , ( h )  and label all the vertices by an index j ,  U(’)€ V. Define the 
successive sets 7 f :  and “I/̂ : by the recursive equations 

and 

(3.3) 

Since an( h )  is self-avoiding, there exists a smallest is d such that V: has only one 
element. This element is called the top vertex t of a , ( h ) .  There also exists a smallest 
k s d such that Vi  has only one element. This element is called the borrom Vertex b 

The top edge of a,(h)  is found by considering the edges connected to the top vertex 
t .  Let these edges be { ( t ,  - e , , ) } ; = , ,  where 2 G j s  d, and suppose without loss of 
generality that i ,  < i2 < . . . < i,. Since j 2 there exists an 1 such that e ,  . e,, = 0; let k 
be the smallest i, for which this is true. Then ( t ,  - e r )  is the top edge, and it is 
perpendicular to e , .  There is always a top edge in any a , ( h ) .  

The bottom edge of o , ( h )  is found by considering the edges connected to the 
bottom vertex b. Let these edges be {( b, e ,! ) } ;=  , where 2 s j S d and suppose again that 
i, < i2 <, . . < i,. Since j 3 2 there exists a 1 such that e ,  . e,, = 0; let k be the smallest i, 
for which this is true. Then ( b ,  e r )  is the bottom edge, perpendicular to e , .  There is 
always a bottom edge. 

A plaquette ( U ,  e , ,  e,) is perpendicular to er if e, . e,, = e , .  eh = 0. This definition leads 
to the following lemma. 

of a , ( h ) .  

Lemma 3.1. If the top edge ( t ,  - e , )  of a surface a , ( h )  is incident on two plaquettes 
( t ,  - e f ,  - e , )  and (1, - e f ,  - e , ) ,  then at least one of these plaquettes is perpendicular to 
e , .  Similarly, if the bottom edge of a surface a, , (h)  is incident on two plaquettes, then 
at least one of these plaquettes is perpendicular to e , .  

Proof: Since e, * e ,  = e h .  e ,  = 0 by definition of the top and bottom edges, we only need 
to show that either e , .  e ,  = 0 or e , .  e ,  = 0. Suppose, without loss of generality, that 
i < j .  Suppose that e; e ,  = 1, then i = 1 and j # 1; hence e, * e ,  = 0 and ( I ,  - e , ,  - e , )  is 
perpendicular to e , .  If e, e ,  = 0, then ( 1 ,  - e , ,  - e , )  is perpendicular to e , .  The same 
arguments hold for the bottom edge. 
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I f t h e  top  edge of a , ( h )  is incident on two plaquettes ( t ,  - e , ,  - e , )  and ( t ,  - e , ,  - e / ) ,  
then by lemma 3.1 at least one of these plaquettes is perpendicular to e , .  The top 
plaquette of a,( h )  is found by choosing that plaquette perpendicular to e ,  with the 
smallest value of i or j .  The bottom plaquette is found in the same way. I f  the top or 
bottom edge of the surface is incident on only one plaquette, then it is not possible 
to define a top or a bottom plaquette. 

It is now easy to study the concatenation of surfaces in two dimensions. The 
surfaces a, , (h)  and a,,(g) have top and  bottom edges. In  two dimensions concatention 
is a map from 9 , , ( h ) x Y n , ( g )  to Y , , + m ( b + g - l )  defined by identifying the top edge 
of a , ( h )  with the bottom edge of a , , ( g ) :  

(3 .5)  a n ( h )  0 am(g)* a n + m ( h  + g - 1 ). 
7 

In d z 3 dimensions concatenation is more complicated. There are three possibilities 

(1) a , ( h )  has a top  plaquette and cr,(g) has a bottom plaquette. 
( 2 )  a , ( h )  has a top  edge while a , ( g )  has a bottom plaquette (or \ice versa). 
(3) u , ( h )  has a top  edge and a , ( g )  has a bottom edge. 
Concatenation can be defined in various ways. We shall require it to have the 

( i )  It must be injective. 
(ii) The number of boundary components must be additive under the construction. 
( i i i )  A fixed number of plaquettes must be added in each case. 
The details of the construction are straightforward but tedious and we give only 

an  outline. Consider the possibilities (1)  to (3)  above in turn. 
(1)  Let the top plaquette of a , , ( h )  be ( t ,  - e , ,  - e / )  and the bottom plaquette of 

a m ( g )  be (6, eh,  e , )  (figure 1). These plaquettes may have different orientations so that 
it may be impossible to translate a,(g) such that they coincide. Instead, we change 
the orientation of the top and  bottom plaquettes by adding plaquettes to a , ( h )  and 
a m ( g ) .  In figure 1 we illustrate how the orientation of the bottom plaquette may be 
changed by the addition of the cube (6, e , ,  e,,  - e / )  to it. It can be shown that by adding 
three such cubes, we can define concatenation to have the properties set out above. 
Thus, counting the number of plaquettes added we find a map 

(3.6) 

which must be considered. 

following properties. 

( h 10 a, ( g )  ++ am+nT io(  h + g 1. 
( 2 )  Let the top edge of a , , ( b )  be ( t ,  - e , )  and the bottom edge of a , ( g )  be ( 6 ,  e,,  e r ) .  

The top edge and bottom plaquette may have different orientations so that it may be 
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impossible to translate a , (g )  such that the top edge coincides with an edge of the 
bottom plaquette. The approach in this case is to construct a top plaquette for a, , (h)  
onto its top edge. This is accomplished by adding plaquettes to the top edge as shown 
in figure 2. We then add an additional set of plaquettes to take account of the possible 
orientations, as above. The outcome is again equation (3.6). 

n 

Figure 2. Concatenation on a top edge which is on a boundary component. The cube 
( f ,  - e , ,  e , ,  e , ) "  with its ( 1 ,  - e , ,  e , )  face deleted is concatenated onto the top edge ( t ,  - e ! )  
by identifying the edges ( t ,  - e , ) .  

( 3 )  In this case we cannot simply identify the top and bottom edges since the 
number of boundary components do not then add. Consequently we add sets of 
plaquettes to construct top and bottom plaquettes as in figure 2 .  The outcome is again 
equation (3 .6) .  

We have now considered all possible cases, and we have constructed the operation 
such that (3 .5)  holds in two dimensions while (3 .6)  is true in d 3 3 dimensions. We 
can summarise the results in the following lemma. 

Lemma 3.2. These exists a concatenation of self-avoiding surfaces in d 3 2 dimensions 
which is a one-to-one map 

y n  ( h ) 0 y m (  g ) + y n  + m ( h + g - 1 1 d = 2  

y n ( h ) @ y m ( g )  + yn+m+,,(h + g )  d 3 3  

mapping pairs ( a , ( h ) ,  a m ( g ) ) - a n , , + , ( h + g - k )  where 1=0 and k =  1 in two 
dimensions and I = 10 and k = 0 in d 2 3 dimensions. 

The fact that concatenation is an injective map is easily seen. The concatenation 
construction does not destroy any of the edges of the two surfaces involved, and thus 
maps vertices onto vertices in a one-to-one fashion. From the definitions of the top 
edge and plaquette and from lemma 3.2 it is now easy to prove the following results: 

Theorem 3.3. The cardinality of Y , , ( h ) ,  s , (h) ,  obeys the following inequalities: 

( i )  sn+,(h) 3 V n , V h z l ,  and d = 2  

(i i)  % + A h )  2 sn(h)  V n , V h a O ,  and d 3 3  

(iii) V n ,  m, V h ,  g 2 1, and d = 2 

(iv) sn(h)sm(g) sn+m+lo(h + g )  V n ,  m, V h ,  g 2 0,  and d 3 3 

(v)  SnSm s sn+m+/ V n ,  m, and d 2 2  

where I is 0 in two dimensions and 10 in d 3 3 dimensions. 

sn (h)sm ( g )  s sn+m ( h  + g - 1.1 
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Finally, we can prove the existence of some of the growth constants of sets of 
random surfaces. These results are stated together in the following theorem. 

Theorem 3.4. These exist finite, positive real numbers Po,  P I ,  P which depend on d 
such that 

lim n- '  log s,,(l) = sup n-I log s,( 1 I = log pI  (i) i f d = 2  
n - r  n: ,0  

lim n-'  log s,(O) =log Po and s,(O) s Po"'" i f d 3 3  
n - x  

( i i )  

Iim n- '  log s, = log P 
,1 -;E 

(iii) 

where s, S P"  in two dimensions and s, s p"+l" in d 3 3 dimensions. 

Roof: (i) Put h = g =  1 in theorem 3.3 ( i i i ) .  Then s,,(l)s,,,(l)Ssn+,,,(l). Since s , ( l )  is 
a sequence of positive numbers such that ~ ~ ( 1 ) ' ' ~  is bounded above (theorem 2.1) 
satisfying this inequality, there exists a finite, positive constant P I  such that ( i )  is 
satisfied [23]. 

(ii) Put h = g = 0 in theorem 3.3 (iv). Then s,(O) is a sequence of positive numbers 
such that s,,(O)'/" is bounded above (theorem 2.1) and s,(O)s,(O)S sn+,,,+lo(0). Thus 
there exists a finite, positive constant Po such that (ii) is true [24]. 

( i i i )  s, is a sequence of positive numbers in d 3 2  dimensions such that SA'" is 
bounded from above (theorem 2.1). Together with the results of concatenation and 
[23,24], the theorem is proven. 

4. Drilling and stripping 

Concatenation provided a means whereby we could derive inequalities between the 
numbers s , (h )  for different numbers of boundary components. In this section we 
investigate other constructions which will increase (drill) or decrease (strip) the number 
of boundary components in a given element of SF,,. 

4.1. Drilling 

Constructing new boundary components on a given random surface at an a priori 
location is a complicated procedure under the self-avoiding condition. In our efforts 
to construct ('drill') new boundaries we shall be successful only in two dimensions. 

Lemma 4.1. Let d = 2. Suppose that an(l)  E Y,,(l). Then it is possible to construct 
boundary components in at least 161 locations on an( 1). Furthermore, there exists a 
finite, positive constant C such that 

( ,,,> s,( 1) S c''s,+48,,( 1 + h )  

where 1x1 is the largest integer less than or equal to x. 

Proof: Let D be a square with 7 x 7 = 49 plaquettes in the square lattice. a,( 1) can be 
completely covered by disjoint copies of D as illustrated in figure 3 ( a ) .  Choose any 
D. If we can create a new boundary component here, then we have shown that we 
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I 

la ) 16) I C )  

Figure 3. Drilling a hole in .U,,!l) in two dimensions. In ( a !  a square of size 7 x 7  is 
identified and deleted. In ( b )  a plaquette is put back at the site marked * to reconnect the 
two pieces which are now only touching at one vertex. The final step in ( c )  is to create a 
new boundary component in the manner indicated and to reconnect the surface by putting 
back plaquettes as shown in  the figure. 

can create a new boundary component in at least locations, since this is the 
minimum number of copies of D necessary to cover ~ ~ ( 1 ) .  Since u,,(l) contains only 
one boundary component, D could not completely contain an entire boundary curve 
(unless it covers o,(l) completely, which is the trivial case). Suppose that C' is the 
total number of surfaces which are identical outside D but are different from each 
other inside D. Then C' is bounded by the total number of ways that at most 49 
plaquettes can be packed into D, say C". To create a new boundary component, begin 
by deleting all the plaquettes of u,,( 1 )  contained inside D (figure 3(  b ) ) .  This deletion 
o f  plaquettes may create a hole in ~ , , ( l ) ,  and then we are finished, having reduced the 
area of o , ( l )  by 49 (this will only happen if D does not intersect any piece of the 
boundary component of ~ ~ ( 1 ) ) .  In  most cases, however, the situation will be like that 
in figure 3( b ) .  

In general, deleting the square D will separate ~ ~ ( 1 )  into a number of different 
pieces, at most 16, since this is the maximum number of times that the boundary 
component can cross the boundary of D. At the four corners of D there is the possibility 
that two of these pieces may share a vertex, as illustrated by the * in figure 3 ( b ) .  We 
deal with these cases first by putting a single plaquette at the *. This reconnects the 
two pieces. Once this is done, we may still be left with 14 disjoint pieces of ~ , , ( l ) .  
The next step is to create a new boundary component. This is achieved by constructing 
a 3 x 3 square with its central plaquette missing at the centre of 0, as illustrated in 
figure 3(c) .  The last step is to reconnect the different pieces of a,,(l). This is done by 
putting plaquettes back between the newly created 3 x 3 square and the disjoint pieces. 
At most three plaquettes are needed to reconnect each piece; this process is illustrated 
in figure 3 ( c ) .  This process is not unique but, since D is finite, there is a maximum 
number of ways that it can be done. Absorb this number into the constant C". In  
principle, the total number of plaquettes that we may have to put back is 48, stemming 
from the fact that D has area 49 but that we must leave a hole at its centre. The total 
area of u,,(l) may thus increase by as much as 48. 

The construction described is a map 
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which is at most C” onto 1. For the cardinality of the sets we thus find 
,I+JX 

s,,( 1) s C“ s , ( 2 )  zs 98C”S,,+,,(2) 
, = , I  - 4 Y  

where the second inequality follows directly from theorem 3.3(i). Put C =98C”. To 
prove the lemma, choose h locations from I&] ways to drill h new boundary com- 
ponents. 

It is not possible to repeat the construction of lemma 4.1 in d 5 3 dimensions. The 
fact that the surfaces are self-avoiding makes it impossible to cover surfaces in d 2 3 
dimensions with squares as was done in two dimensions. The only way which we can 
use to increase the number of boundary component of a surface m,,(h) E Y , , ( h )  in d 2 3 
dimensions is by concatenation as described in theorem 3.3(iv) where one can put g = 1 .  

4.2. Stripping 

The next construction to be defined on the set Y,, will be designed to reduce the number 
of boundary components in any given random surface. The strategy is to remove a 
strip of plaquettes between one boundary component and another. We are able to 
prove a slightly stronger result in d = 2 dimensions than in  d 3 3 dimensions. 

Lemma 4.2. Let d = 2 .  Suppose that m,,( h )  E SF,( h )  where h 5 2 .  Then the number of 
boundary components in m n ( h )  can be reduced by 1 by removing at most [;(-- 
1)1 plaquettes, where 1 x1 is the smallest integer greater than or equal to x. Furthermore 

ProoJ: Consider first the case for h = 2. Consider the annulus A in figure 4 where the 
shaded strip is to be removed. I f  there are n plaquettes in the annulus ,  then a simple 
calculation shows that at most I$(-- 1)1  plaquettes will be removed when the 

i t ’1 

U 

Figure 4. Cutting a strip of plaquettes ( t h e  shaded s t r ip)  from this surface will reduce the 
number of boundary components to one.  
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two boundary components are joined. The smaller boundary component of A has a 
top  vertex r and a bottom vertex b as marked in figure 4. The situation in which the 
maximum number of plaquettes have to be removed, in order to join up  two boundary 
components, is for surfaces such as A in figure 4. To see this, consider any B as in 
figure 5, also a surface with n plaquettes, but suppose that we have to remove at least 
m > [$(m- 1)1 plaquettes to join the two boundary components. Like A, the 
smaller boundary component of B has a top  vertex t' and bottom vertex b' in figure 
5 .  Superimpose A and B by letting f and t' coincide. Then every plaquette of A with 
centre coordinates (as defined in theorem 2.1) such that the first component is strictly 
greater than the first component of t, or with first coordinate equal to and second 
coordinate strictly greater than the coordinates of t - $ ( e ,  + e 2 ) ,  is covered by a plaquette 
of B (since m > [ i ( m -  1)1) ,  the shaded area in figure 5. In  the same way, if we 
superimpose A and B by letting b and b' coincide, all the plaquettes of A with centre 
coordinates with first components strictly smaller than the first component of b, or 
with first components equal to and second coordinates strictly smaller than the coordin- 
ates of b + $ ( e ,  + e 2 ) ,  are covered with plaquettes of B. So every plaquette of A can 
be covered by a plaquette of B. Since the inequality between m and the number of 
plaquettes of A to be removed is strict, there are some plaquettes of B that d o  not 
cover any of the plaquettes of A, so B must have more than n plaquettes. This is a 
contradiction, since we have assumed that B has only n plaquettes; hence m s  
Ti(-- 1 )I. In  the general case, with more than two boundary components, we 
find the minimum number of plaquettes to be removed by superimposing figure 4 onto 
the surface. The same arguments as above then hold. It is easily checked that there 
is precisely one special case. A hole the size of a single plaquette having four plaquettes 
incident on it such that deleting any will disconnect the surface. In this case we delete 
the plaquette incident on the top  vertex of the hole and  fill the hole in. 

The construction defined so far maps 

Yn(h )+  ij Y , ( h - l )  
,=,,-: 

where z = ri(d'2n + 1 - l ) ] ,  but not one-to-one. The worst case is illustrated in figure 
6 ,  where the shaded plaquette can be in 1 9 1  positions; its removal will reduce the 

"L e1 v 
Figure 5. To find the least number of plaquettes to be removed in order to reduce the 
number of boundary components, figure 4 is superimposed on figure 5 by letting I and I' 

coincide. The shaded plaquettes are those plaquettes of figure 4 that are covered by  a 
plaquette of E .  The process is then repeated by letting b and b' coincide. 
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I I 
Figure 6 .  The shaded plaquette can be removed from 
same resulting surface.  

places and  would give the 

number of boundaries by 1 ,  each time producing the same result. Hence 

where we have used theorem 3.3(i) in the second inequality. 

Corollary 4.3. Let d = 2. Suppose that U,,( h )  E .Yn( h )  where h 5 2 .  Then we can reduce 
the number of boundary components in a,(h 1 by g h - 1 to find 

Boo$ Choose g boundaries from h and apply lemma 4.2. 

A similar proof can be constructed in d 3 3 dimensions. The result is stated in the 
following lemma. 

Lemma 4.4. Let d 2 3. Suppose that ~ , , ( h )  E Y, , (h )  where h 3 2 .  Then the number of 
boundary components in U,, ( h  ) can be reduced by one by removing a strip of at most 

plaquettes. Furthermore 

where i,, is a number such that - 1 in S 2 .  

Proox As in two dimensions, consider the worst case first. Figure 7 is a hollow tube 
with two boundaries at its ends. To reduce the number of boundary components to 
one, it is necessary to remove [a] plaquettes (the shaded stip in figure 7 ) .  This 
construction joins up  the two boundary components. To see that all other cases are 
worse, consider any a"(2) and suppose that we have to remove at least m >  
plaquettes to join the two boundaries. Shade this strip of plaquettes as in figure 7 .  
Then there are two strips of plaquettes adjacent to the shaded strip, one on each side, 
each containing at least m plaquettes which can be removed instead to join the 

Figure 7. In  this figure we have to remove plaquettes before the number of boundary 
components will be reduced to one. The boundary components are  at the endpoints of 
the tube.  
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boundaries. Shade these strips too. Lastly, at least one of the two strips last shaded 
contains a fourth adjacent strip of at least m plaquettes which can be removed to join 
the two boundaries (this is because 5Ed has girth 4). So ~ ~ ( 2 )  has a surface area of at 
least 4m > n. But this is a contradiction, so is the maximum number of plaquettes 
to be removed. If a surface has more than two boundary components, then the strips 
are removed in the same way, but not necessarily between the same two boundaries, 
and  the outcome is still a contradiction. 

This operation maps 
n - l  

Y , ( h ) +  U q ( h - 1 )  
,=.-[;I 

but the mapping is not one-to-one. The worst case is illustrated in figure 8. Here 
( n  -3) elements of Yn(h )  will map onto a single element of Y , - , ( h  - 1) if the shaded 
plaquette is removed. Hence 

n - l  

s , ( h ) s ( n - 3 )  s , (h - l ) .  
J = r ' i ' i  

From theorem 3.3(ii) we have the result that s , ( h )  s s,+4(h).  So to each j in s,( h - 1)  
in the above equation, add  n + i, - j ;  i, chosen such that n + i, - j  is a multiple of four, 
while applying the inequality in theorem 3.3(ii). Certainly one can choose -1 s i, s 2. 
Thus 

n - l  

s n ( h ) s  ( n  -3)  C s,+,,(h - 1) 
J = r : " l  

since each sJ (h  - 1 )  6 s,+,!( h - 1) for -1 S i, s 2 .  For each n define i, by 

S,+, , , (h  - 1) = max s,+,(h - 1) 
- I S , < ?  

and substitute into the above equation. Performing the sum over j then proves the 
theorem. 

Figure 8. The shaded plaquette can be removed from ( n  - 11 positions to give the same 
outcome. 

Corollary 4.5. Let d 2 3. Suppose that an( h )  E Yn( h )  where h L 2 .  Then we can reduce 
the number of boundary components in a,( h )  by g s h - 1 to find 

(:) s,(h 1 s { fi [ ( n  + in, - 31 ( - l ) ]  } s,,,,,( h - g )  
A = I  

where - g  s in, 2g and -g  s j ,  s 2g, for all n and k. 

Proof: Choose g boundary components from h and apply lemma 4.4. 
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5. Growth constants 

In this section we investigate the growth constants of the sets Yn(h)  in n. In  8 5.1  we 
prove that the limits (1.4) exist and that they are all equal (equation (1.5)). In  B 5.2 
we prove that the growth constant of Y,(O) is strictly smaller than that of Y',(h) if 
h 3 1. Finally, in § 5.3 we prove that in two dimensions PI, < p as in equation (1.7). 

5.1. P I = P I ~  
In this subsection, we take the results from concatenation (theorem 3.3) and show 
that, with the results of the stripping operation, it is possible to prove the existence of 
the limit (1.4). In d 3 3  dimensions, we prove the existence of P I  before we look at 
the more general case. 

Theorem 5.1. Let d 2 3 .  Then there exists a finite, positive real number p , ,  which 
depends on d, such that 

Iim K'  log s,( 1) = log p ,  . 
f l + J  

ProoJ: Put h = g = 1 in theorem 3,3(iv). Then 

s, ( 1) sn, ( 1) 3, + m +  I o(  2). 

From lemma 4.4 we have 

where p = n + m + 10 and i,, is a number between -1 and 2. By theorem 2.1 s,( 1)'"' 
is a sequence of numbers bounded above, and the theorem follows from the results 
of [23-251. 

We now prove the main result of this subsection. The proof is slightly different in 
d = 2 and in d 2 3 dimensions, so we shall give a separate proof for each of these cases. 

Theorem 5.2. Let d 3 2 .  Then there exist finite, positive real numbers pl,Vh 3 1, which 
depend on d, such that p ,  =PI ,  for all h and 

( i )  

(ii) 

lim n-I log s , ( h )  = log p h  

lim n- '  log s , ( h )  = log pll 

i f d = 2  

if d 2 3 .  

n - x 

f7-X 

ProoJ: (i) Let d = 2. We suppose that this limit exists for h and prove that it then 
exists for h + 1. From theorem 3.3(iii) and lemma 4.2 we find 

where m is chosen such that s , , (2)  > 0 and then fixed. Taking the logarithm, dividing 
by n and letting n go to infinity, gives 

log ph s lim n - '  log s,,(h + 1)  4 log p,, 
n - x  
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so that pI1 = P , l + l .  The second inequality in the statement follows directly from the 
result in theorem 3.3(i). Since P I  exists, PI, exists for all h and is equal to P I .  

(ii) Let d 3 3. Suppose that the limit exists for h. Since it exists for h = 1 we have 
to prove that it exists for h + 1. From theorem 3.3(iv) and lemma 4.4 we find 

where m is chosen such that s , ,- ,o(l)  > 0 and  is then fixed, and i,, is an integer between 
-1  and 2 inclusive. Taking logarithms, dividing by n and letting n go to infinity gives 
p,, = phtl so that P I  = p,, for all h 2 1. 

5.2. Po < P ,  in d 2 3  dimensions 

At this point we have not derived a relationship between Po and P I  in d 2 3 dimensions. 
Concatenation indicates that s,(O)s,(l) s s,+,+,,,( 1) proving that pas p , .  Numerical 
evidence that the inequality is strict can be found in the calculation by Glaus [SI. Here 
we prove that it is strict by constructing a lower bound on p ,  that is strictly greater 
than an upper bound on Po.  

Lemma 5.3 (Durhuus et a1 [16]). Let d 2 3. Then 

s,(O) s (2") ( 2 d  -3)"- ' .  

Lemma 5.4. Let d 2 2 .  Then 

Prooj Consider first the proof for d = 2 .  Suppose we deposit a plaquette in the plane. 
This plaquette has four edges, two of which have endpoints with larger first o r  second 
components than the other two. Choose one of these edges and add  a second plaquette 
incident on this edge in a positive lattice direction ( e ,  or e z ) .  Repeat this process with 
the last plaquette added. Repeating this process n times we note that with each 
plaquette added we have two possible outcomes, giving 2"-'  for n plaquettes. 

In d 2 3 dimensions the construction is similar. Embed a plaquette in 2'* in one 
of (:) orientations. Suppose its edges are in the e, and e, directions. Two of the edges 
of this plaquette are incident on the top vertex of the plaquette. Choose one of these, 
say e,, and add  a plaquette in the ( e , ,  e r )  plane to it, 1 S k S d and k # j. This plaquette 
can thus be added in ( d  - 1) possible orientations. Since we are adding on two edges 
we can add  this plaquette in 2 ( d  - 1 )  different ways. Repeat this process now ( n  - 1) 
times, always adding onto the last plaquette added. All the objects created in this way 
have one boundary component, so that they are all in Y"(1). This proves the theorem. 

Theorem 5.5. Let d 3 3. Then 
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Proof: By lemmas 5.3 and 5.4 

lim n-' log s,(O) s log(2d - 3 )  
t 7 - r  

and 

n-Jc lim n-'  log s,( 1)  5 log(2d - 2 )  

so that Po < P I .  

5.3. p ,  <P in d =2 dimensions 

In this subsection we prove the above inequality for two dimensions. To prove this 
result, we use the strong inequality produced by the 'drilling' construction in two 
dimensions in 5 4. We do not have an equivalent result for d 5 3  dimensions, so that 
we are unable to extend this result to higher dimensions. 

Theorem 5.6. Let d = 2 .  Then P ,  < P. 

Proof: By theorem 3.4(i), for any e > 0 we can find a no€  such that 

( P I  - e ) "  s Sn(1) s (Pi + & I n  

for all n 2 no and where no goes to infinity if E -+ 0. Thus 

The combinatorial factor in the above is 0 unless h s 1 9 1 .  Hence, h s 6, and since 
L6-J =z 1 7 1  we find n - 4 8 h  

= ( P I  - 1 + c - ' ( p ,  - &)-48)';;'. 

Take logarithms, divide by n, and let no+ W .  Then n -+ 

that 
and we can take E + O', so 

1 
n - x  n p = lim -log s, 

q 3 ' + & l O g ( l + c - ' p ; ~ ~ )  

' P I .  
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6. Additional results 

There is a large body of numerical evidence that the number of self-avoiding walks 
with n edges, c,,, has the asymptotic behaviour 

c,,-nY-' P '' (6.1) 

especially from series analysis work [26] and the study of critical phenomena in magnets 
[27]. is the growth constant of the self-avoiding random walk ( a  lattice-dependent 
number equivalent to p in this paper) and  y is a critical exponent (usually called the 
susceptibility exponent through the connection it has in the study of critical 
phenomena). A rigorous proof of (6.1) is still outstanding, and i t  is only known 
rigorously that c, = p"+o" ''I . The study of bond (edge) animals with fixed cyclomatic 
index [13] (trees have cyclomatic index zero) leads to the introduction of a set of 
similar critical exponents for lattice animals. If a,(c)  is the number of animals with 
cyclomatic index c and  n edges, then it is known rigorously that a,(c)  = AOnto(") ,  and  
postulated that 

a,(c) -  n-'tAI: (6.2) 

where A. is a growth constant and e, is an  exponent depending on the number of 
cycles, c, of the animals. For edge animals, Soteros et a1 [ 131 proved the relationship 

In  the case of surfaces on the lattice with a fixed number of boundary components 
we have proven in fi 5 that (theorems 3.4, 5.1 and 5.2) s , ( h )  = p ~ ' " ' " ' .  It seems 
reasonable to postulate (in view of the results obtained for walks and, more importantly, 
for lattice animals) that 

s , (h)-  n-dilp;:. (6.3) 

dh is again a critical exponent associated now with self-avoiding random surfaces. 
There is some numerical evidence for this assumption, at least for the cases h = 0 and  
1 [ 9 ] .  It is now of interest to see what the constructions in this paper imply for the 
exponent 4h. Immediately we have the following theorem. 

e,,, = e, - 1. 

Theorem 6.1. Suppose that for every h 3 1 there exists a constant C,, such that 

s, ( h ) - Chn -"lip i: , 
Then the exponents q5,, are related to each other via the following relations: 

( i)  d = 2 ;  

4 h  4 h t l  

6, - h 3 4 h - l  a 41 - i h  V h a l  

( i i )  d 3 3 ;  

4 h 3 4 h t 1 3 4 1 - 2 h  V h z l  

Roo$ ( i )  The first inequality follows directly from the results of concatenation. 
Consider theorem 3.3(iii), let g = 2 ;  then 

s n ( h ) s m ( 2 ) s  s n + m ( h +  1). 
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Fix m > 0 at a value such that s,,(2) > 0. Substitute the assumption, divide by p ; ,  take 
logarithms, divide by log n and let n +E. This produces -q$, S - & +  I .  

The second inequality follows from lemma 4.1 and corollary 4.3: 

Performing the series of operations above and using ( y )  - ( a n ) h  produces 

--dl + h s -4/,+1 s - 4l  + ; h .  

( i i )  This result can be directly derived from theorem 3.3 ( iv )  and  corollary 4.5: 

where m is a number chosen such that s , , , - ~ ~ (  1)  > 0 and - h  s in ,  j,, , s 2h for all n and 
k. The numbers i,, and j,, are bounded for each n and fixed value of h, the number 
of boundary components. Performing the same series of manipulations as above gives 
the desired results. 

7. Conclusions 

In  this paper we classified self-avoiding surfaces by the numbers of distinct boundary 
components, and  devised constructions that would either increase (drilling) or decrease 
(stripping) the number of boundary components of a surface in analogy with the 
cyclomatic index defined for lattice animals [13, 141. These operations were combined 
to prove the existence of growth constants PI, on the hypercubic lattice, and  gave the 
bounds in 9 6 on the critical exponent 4,,. The following observations can now be made. 

( 1 )  Apart from proving the existence of the growth constants p,, for the sets Y’,(h) 
we also proved in 8 5.1 that the growth constants are independent of the number of 
boundary components of a set, that is P I  = p h  for all h a 1 in all dimensions d 5 2. In  
d 2 3  dimensions we also proved that the growth constant of 9’,,(0) is strictly smaller 
than P I  and in d = 2 dimensions we proved that p ,  < p, where p is the growth constant 
of the set Y’,,. We are at present unable to extend this result to d a 3 dimensions, 
primarily because we cannot prove lemma 4.1 in higher dimensions. 

(2) I n  this paper we have considered self-avoiding surfaces with any genus and  
with boundary components which can be knotted or linked. Alternatively, we could 
consider surfaces with the topology of a punctured sphere (with zero genus) and  in 
which the boundary components are unknotted and unlinked. In  this case classifying 
by the number of boundary components is equivalent to classifying by the rank of the 
first homology group as seen from equation (1.1). Our arguments apply equally to 
this case and  establish the existence of growth constants PE. We can show that 
pt = PYVh Z 1 and /3:< p? for d 5 3. This case has been examined numerically by 
Glaus [9] who found 

/.3: = 1.733 * 0.006 (7.1) 

/3:= 12.798k0.018 (7.2) 
in three dimensions. 

components. The same arguments apply and we find similar results. 
(3) Similarly we could confine our attention to orientable surfaces with h boundary 



Self-avoiding surfaces 4951 

(4)  The critical exponents in  5 6 were bounded by applying the lemmas derived 
in $0 3 and 4. It is now known that for lattice animals, the exponents 8, satisfy the 
relationship 

Here the index c is the cyclomatic index of the animals. The bounds derived in theorem 
6.1 on the exponents 4,, for surfaces are consistent with a similar relation for self- 
avoiding surfaces, and we conjecture that 

&+I = 41 - (7.4) 

in d 3 2 dimensions. The exponent d ,  is believed to be that of branched polymers 
[9, 10,28,29], and was found by Glaus to be 

4,  = 1.48i0.05 ( 7 . 5 )  

in three dimensions. 
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